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Predictive coding under the free-energy principle
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This paper considers prediction and perceptual categorization as an inference problem that is solved
by the brain. We assume that the brain models the world as a hierarchy or cascade of dynamical
systems that encode causal structure in the sensorium. Perception is equated with the optimization or
inversion of these internal models, to explain sensory data. Given a model of how sensory data are
generated, we can invoke a generic approach to model inversion, based on a free energy bound on the
model’s evidence. The ensuing free-energy formulation furnishes equations that prescribe the
process of recognition, i.e. the dynamics of neuronal activity that represent the causes of sensory
input. Here, we focus on a very general model, whose hierarchical and dynamical structure enables
simulated brains to recognize and predict trajectories or sequences of sensory states. We first review
hierarchical dynamical models and their inversion. We then show that the brain has the necessary
infrastructure to implement this inversion and illustrate this point using synthetic birds that can
recognize and categorize birdsongs.
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1. INTRODUCTION
This paper reviews generic models of our sensorium
and a Bayesian scheme for their inversion. We then
show that the brain has the necessary anatomical and
physiological equipment to invert these models, given
sensory data. Critically, the scheme lends itself to a
relatively simple neural network implementation that
shares many features with real cortical hierarchies in
the brain. The basic idea that the brain tries to infer the
causes of sensations dates back to Helmholtz (e.g.
Helmholtz 1860/1962; Barlow 1961; Neisser 1967;
Ballard et al. 1983; Mumford 1992; Kawato et al. 1993;
Dayan et al. 1995; Rao & Ballard 1998), with a recent
emphasis on hierarchical inference and empirical Bayes
(Friston 2003, 2005; Friston et al. 2006). Here, we
generalize this idea to cover dynamics in the world and
consider how neural networks could be configured to
invert hierarchical dynamical models and deconvolve
sensory causes from sensory input.

This paper comprises four sections. In §1, we
introduce hierarchical dynamical models and their
inversion. These models cover most of the models
encountered in the statistical literature. An important
aspect of these models is their formulation in generalized
coordinates of motion, which lends them a hierarchal
form in both structure and dynamics. These hierarchies
induce empirical priors that provide structural and
dynamical constraints, which can be exploited during
inversion. In §2, we show how inversion can be
formulated as a simple gradient ascent using neuronal
networks; in §3, we consider how evoked brain responses
might be understood in terms of inference under
hierarchical dynamical models of sensory input.1
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2. HIERARCHICAL DYNAMICAL MODELS
In this section, we look at dynamical generative models
pð y;wÞZpð y jwÞp ðwÞ that entail a likelihood, p(yjw), of
getting some data, y, given some causes, wZ{x, v, q},
and priors on those causes, p(w). The sorts of models
we consider have the following form:

yZ gðx; v; qÞCz;

_xZ f ðx; v; qÞCw;
ð2:1Þ

where the nonlinear functions f and g of the states are
parametrized by q. The states v(t) can be deterministic,
stochastic or both, and are variously referred to as
inputs, sources or causes. The states x(t) meditate the
influence of the input on the output and endow the
system with memory. They are often referred to as
hidden states because they are seldom observed
directly. We assume that the stochastic innovations
(i.e. observation noise) z(t) are analytic, such that the
covariance of ~zZ ½z; z 0; z 00;.�T is well defined; simi-
larly, for w(t), which represents random fluctuations on
the motion of hidden states. Under local linearity
assumptions, the generalized motion of the output or
response ~yZ ½ y; y 0; y 00;.�T is given by

yZ gðx; vÞCz x 0 Z f ðx; vÞCw

y 0 Z gxx
0 Cgvv

0 Cz 0 x 00 Z fxx
0 C fvv

0 Cw 0

y 00 Z gxx
00 Cgvv

00 Cz 00 x000 Z fxx
00 C fvv

00 Cw 00

« «

ð2:2Þ

The first (observer) equation shows that the generalized
states uZ ½ ~v; ~x; �T are needed to generate a generalized
response or trajectory. The second (state) equations
enforce a coupling between different orders of the
motion of the hidden states and confer memory on the
system. We can write these equations compactly as
This journal is q 2009 The Royal Society
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~yZ ~gC ~z;

D ~xZ ~f C ~w;
ð2:3Þ

where the predicted response ~gZ ½g; g 0; g 00;.�T and
motion ~fZ ½f ; f 0; f 00;.�T in the absence of random
fluctuations are

g Z gðx; vÞ f Z f ðx; vÞ

g 0 Z gxx
0 Cgvv

0 f 0 Z fxx
0 C fvv

0

g 00 Z gxx
00 Cgvv

00 f 00 Z fxx
00 C fvv

00

« «

ð2:4Þ

and D is a block-matrix derivative operator, whose first
leading diagonal contains identity matrices. Gaussian
assumptions about the fluctuations provide the
likelihood and furnish empirical priors pð ~x j ~vÞ on the
motion of hidden states

pð ~y; ~x; ~vÞZ pð ~y j ~x; ~vÞpð ~x; ~vÞ

pð ~y j ~x; ~vÞZNð ~y : ~g; ~S
z
Þ

pð ~x; ~vÞZ pð ~x j ~vÞpð ~vÞ

pð ~x j ~vÞZNðD ~x : ~f ; ~S
w
Þ

pð ~vÞZNð ~v : ~h; ~S
v
Þ:

ð2:5Þ

Here, we have assumed Gaussian priors pð ~vÞ on the
generalized causes, with mean, ~h, and covariance, ~S

v
.

The factorization in equation (2.5) is important because
one can appeal to empirical Bayes to interpret the
conditional dependences that are induced. In empirical
Bayes (Efron & Morris 1973), factorizations of the prior
density create empirical priors that share properties of
both the likelihood and priors. For example, the density
on the hidden states pð ~x j ~vÞ is part of the prior on
quantities needed to evaluate the likelihood. However, it
is also a likelihood of the hidden states, given the causes
or inputs. This renders it an empirical prior. It is these
constraints that can be exploited by the brain and are
accessed through plausible assumptions about noise.
These assumptions are encoded by their covariances ~S

z

and ~S
w
or inverses ~P

z
and ~P

w
(known as precisions).

Generally, these covariances factorize; ~S
i
ZSi5Ri into

a covariance matrix and a matrix of correlations Ri

among generalized states that encode their autocorrela-
tions or smoothness.

(a) Hierarchical forms

Hierarchical dynamical models generalize the (mZ1)
model given in §1,

yZ gðxð1Þ; vð1ÞÞCzð1Þ

_xð1Þ Z f ðxð1Þ; vð1ÞÞCwð1Þ

«

vðiK1Þ Z gðxðiÞ; vðiÞÞCzðiÞ

_xðiÞ Z f ðxðiÞ; vðiÞÞCwðiÞ

«

vðmÞ Z hCzðmC1Þ:

ð2:6Þ

Again, f (i )Zf (x(i ), v(i )) and g(i )Zg(x(i ), v(i )) are
functions of the states. The conditionally independent
fluctuations z(i ) and w(i ) play the role of observation
noise at the first level and induce random fluctua-
tions in the states at higher levels. The causes
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vZ ½vð1Þ;.; vðmÞ�T link levels, whereas the hidden
states xZ ½xð1Þ;.; xðmÞ�T link dynamics over time. In
a hierarchical form, the output of one level acts as an
input to the next. Inputs from higher levels can enter
nonlinearly into the state equations and can be
regarded as changing its control parameters to
produce quite complicated generalized convolutions
with deep (i.e. hierarchical) structure.

(b) Model inversion and variational Bayes

We now consider how these models are inverted (for
details, see Friston 2008). A very general approach is
based on variational Bayes, which approximates the
conditional density p(w jy, m) on the causes, w, given a
model m and data y. This is achieved by optimizing the
sufficient statistics of a recognition density q(w) with
respect to a lower bound on the evidence p( y jm) of the
model itself (Feynman 1972; Hinton & von Camp
1993; MacKay 1995; Neal & Hinton 1998; Friston
et al. 2007). In this paper, we assume that the
parameters are known and focus on the states;
q(w)Zq(u(t)), where uZ ½ ~v; ~x; �T. To further simplify,
we assume that the brain uses something called the
Laplace approximation. This enables us to focus on a
single quantity for each unknown state, the conditional
mean; under the Laplace approximation, the conditional
density assumes a fixed Gaussian form qðuðtÞÞZ
Nðu : ~m;CÞ with sufficient statistics ~m andC, correspond-
ing to the conditional mean and covariance of the
unknown states. A key advantage of the Laplace
assumption is that the conditional precision is a function
of the mean, which means we can focus on optimizing
the mean (precision is the inverse covariance).

In static systems, the mean maximizes the energy,
U ðtÞZ ln pð ~y; uÞ; this is the solution to a gradient
ascent scheme, _~mZU ðtÞu. In dynamical systems, the
trajectory of the conditional mean maximizes the path
integral of energy (called action), which is the solution
to the ansatz

_~mKD ~mZU ðtÞu: ð2:7Þ

Here, _~mKD ~m can be regarded as motion in a frame of
reference that moves along the trajectory encoded in
generalized coordinates. Critically, the stationary
solution, in this moving frame of reference, maximizes
the action. This may sound a little complicated but is
simply a version of Hamilton’s principle of stationary
action, which allows the conditional mean in equation
(2.7) to converge on a ‘moving target’. At this point, the
path of the mean becomes the mean of the path and
_~mKD ~mZ0.

(c) Summary

In this section, we have introduced hierarchical
dynamical models in generalized coordinates of
motion. These models are as complicated as one
could imagine; they comprise causes and hidden states,
whose dynamics can be coupled with arbitrary
(analytic) nonlinear functions. Furthermore, these
states can have random fluctuations with unknown
amplitude and arbitrary (analytic) autocorrelation
functions. A key aspect of these models is their
hierarchical form, which induces empirical priors on
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the causes. These recapitulate the constraints on
hidden states, furnished by constraints on their motion.

By assuming a fixed-form (Laplace) approximation
to the conditional density, one can reduce model
inversion to finding the conditional means of unknown
causes. This can be formulated as a gradient ascent in a
frame of reference that moves along the path encoded

in generalized coordinates. The only thing we need to
implement this recognition scheme is the internal
energy, U ðtÞZ ln pð ~y; uÞ, which is specified by the
generative model (equation (2.5)).
3. HIERARCHICAL MODELS IN THE BRAIN
A key architectural principle of the brain is its
hierarchical organization (Maunsell & Van Essen
1983; Zeki & Shipp 1988; Felleman & Van Essen

1991). This has been established most thoroughly in
the visual system, where lower (primary) areas receive
sensory input and higher areas adopt a multimodal or
associational role. The neurobiological notion of a

hierarchy rests upon the distinction between forward
and backward connections (Rockland & Pandya 1979;
Murphy & Sillito 1987; Felleman & Van Essen 1991;
Sherman & Guillery 1998; Angelucci et al. 2002). This
distinction is based upon the specificity of cortical

layers that are the predominant sources and origins of
extrinsic connections. Forward connections arise
largely in superficial pyramidal cells, in supragranular
layers, and terminate on spiny stellate cells of layer 4 in

higher cortical areas (Felleman & Van Essen 1991;
DeFelipe et al. 2002). Conversely, backward connec-
tions arise largely from deep pyramidal cells in
infragranular layers and target cells in the infra- and
supragranular layers of lower cortical areas. Intrinsic

connections mediate lateral interactions between
neurons that are a few millimetres away. There is a
key functional asymmetry between forward and back-
ward connections, which renders backward connec-
tions more modulatory or nonlinear in their effects on

neuronal responses (e.g. Sherman & Guillery 1998; see
also Hupe et al. 1998). This is consistent with the
deployment of voltage-sensitive N-methyl-D-aspartic
acid receptors in the supragranular layers that are

targeted by backward connections (Rosier et al. 1993).
Typically, the synaptic dynamics of backward connec-
tions have slower time constants. This has led to the
notion that forward connections are driving and illicit
an obligatory response in higher levels, whereas back-

ward connections have both driving and modulatory
effects and operate over larger spatial and temporal
scales. We now consider how this hierarchical
functional architecture can be understood under the

inversion of hierarchical models by the brain.
(a) Perceptual inference
If we assume that the activity of neurons encodes the

conditional mean of states, then equation (2.7)
specifies the neuronal dynamics entailed by recognizing
states of the world from sensory data. In Friston
(2008), we show how these dynamics can be expressed
simply in terms of prediction errors,
Phil. Trans. R. Soc. B (2009)
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Using these errors, we can rewrite equation (2.7) as

_~mZU ðtÞu CD ~mZD ~mK~3T
u x

xZ ~P~3Z ~3KLx ~PZ
~P
z

~P
w

" #
;

ð3:2Þ

equation (3.2) describes how neuronal states self-
organize when exposed to sensory input. Its form is
quite revealing and suggests two distinct populations of
neurons; state units whose activity encodes ~mðtÞ and error
units encoding precision-weighted prediction error
xZ ~P~3, with one error unit for each state. Furthermore,
the activities of error units are a function of the states
and the dynamics of state units are a function of
prediction error. This means that the two populations
pass messages to each other and to themselves. The
messages passed within the states, D ~m, mediate
empirical priors on their motion, while KLx optimize
the weighting or gain of error units.
(b) Hierarchical message passing

If we unpack these equations, we can see the
hierarchical nature of this message passing,

_~mðiÞv ZD ~mðiÞvK~3ðiÞTv x
ðiÞKx

ðiC1Þv

_~mðiÞx ZD ~mðiÞxK~3ðiÞTx xðiÞ

xðiÞv Z ~mðiK1ÞvK ~gð ~mðiÞÞKLðiÞzxðiÞv

xðiÞx ZD ~mðiÞxK ~f ð ~mðiÞÞKLðiÞwxðiÞx:

ð3:3Þ

This shows that error units receive messages from the
states in the same level and the level above, whereas
states are driven by error units in the same level and the
level below (figure 1). Critically, inference requires only

the prediction error from the lower level x(i ) and the
level in question, x(iC1). These provide bottom-up and
lateral messages that drive conditional expectations ~mðiÞ

towards a better prediction, to explain the prediction
error in the level below. These top-down and lateral
predictions correspond to ~gði Þ and ~f ði Þ. This is the
essence of recurrent message passing between hier-
archical levels to optimize free energy or suppress
prediction error, i.e. recognition dynamics. In sum-
mary, all connections between error and state units are
reciprocal, where the only connections that link levels
are forward connections conveying prediction error to
state units and reciprocal backward connections that
mediate predictions.
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Figure 1. Schematic detailing the neuronal architectures that encode an ensemble density on the states of a hierarchical model.
This schematic shows the speculative cells of origin of forward driving connections that convey prediction error from a lower area
to a higher area and the backward connections that are used to construct predictions. These predictions try to explain the input
from lower areas by suppressing prediction error. In this scheme, the sources of forward connections are the superficial
pyramidal cell population and the sources of backward connections are the deep pyramidal cell population. The differential
equations relate to the optimization scheme detailed in the main text. Within each area, the cells are shown in relation to the
laminar structure of the cortex that includes supragranular (SG), granular (L4) and infragranular (IG) layers.
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We can identify error units with superficial pyrami-
dal cells because the only messages that pass up the
hierarchy are prediction errors, and superficial pyr-
amidal cells originate forward connections in the brain.
This is useful because it is these cells that are primarily
responsible for electroencephalographic signals that
can be measured non-invasively. Similarly, the only
messages that are passed down the hierarchy are the
predictions from state units. The sources of extrinsic
backward connections are the deep pyramidal cells,
and one might deduce that these encode the expected
causes of sensory states (see Mumford 1992; Raizada &
Grossberg 2003; figure 1). Critically, the motion of
each state unit is a linear mixture of bottom-up
prediction error (equation (3.3)). This is exactly what
is observed physiologically; bottom-up driving inputs
elicit obligatory responses that do not depend on other
bottom-up inputs. The prediction error itself is formed
by predictions conveyed by backward and lateral
connections. These influences embody the nonlinea-
rities implicit in ~gði Þ and ~f ði Þ. Again, this is entirely
consistent with the modulatory characteristics of back-
ward connections.

(c) Summary

We have seen how the inversion of a generic
hierarchical and dynamical model of sensory inputs
can be transcribed onto neuronal quantities that
optimize a bound on the evidence for that model.
Under some simplifying assumptions, this optimization
Phil. Trans. R. Soc. B (2009)
corresponds to the suppression of prediction error at all
levels in a cortical hierarchy. This suppression rests
upon a balance between bottom-up (prediction error)
and top-down (empirical prior) influences. In §3, we
use this scheme to simulate neuronal responses.
Specifically, we consider the electrophysiological
correlates of prediction error and ask whether we can
understand some common phenomena in event-related
potential (ERP) research in terms of message passing
in the brain.
4. BIRDSONG AND ATTRACTORS
In this section, we examine the emergent properties of a
system that uses hierarchical dynamics or attractors as
generative models of sensory input. The example we
use is birdsong and the empirical measures we focus on
are local field potentials (LFP) or evoked (ERP)
responses that can be recorded non-invasively. Our
aim is to show that canonical features of empirical
electrophysiological responses can be reproduced easily
under attractor models of sensory input. We first
describe the model of birdsong and demonstrate its
dynamics through simulated lesion experiments. We
then use simplified versions to show how attractors can
be used to categorize sequences of stimuli quickly and
efficiently. Throughout this section, we exploit the fact
that superficial pyramidal cells are major contributors
to observed LFP and ERP signals, which means that we
can ascribe these signals to prediction error (figure 1).
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(a) Attractors in the brain

Here, the basic idea is that the environment unfolds as
an ordered sequence of spatio-temporal dynamics,
whose equations of motion induce attractor manifolds
that contain sensory trajectories. Critically, the shape of
the manifold generating sensory data is itself changed
by other dynamical systems that could have their own
attractors. If we consider the brain has a generative
model of these coupled attractors, then we would
expect to see attractors in neuronal dynamics that are
trying to predict sensory input. In a hierarchical setting,
the states of a high-level attractor enter the equations of
motion of a low-level attractor in a nonlinear way, to
change the shape of its manifold. This form of this
generative model has a number of sensible and
compelling characteristics.

First, at any level, the model can generate and
therefore encode structured sequences of events, as the
states flow over different parts of the manifold. These
sequences can be simple, such as the quasi-periodic
attractors of central pattern generators (McCrea &
Rybak 2008), or can exhibit complicated sequences of
the sort associated with chaotic and itinerant dynamics
(e.g. Haken et al. 1990; Friston 1997; Jirsa et al. 1998;
Kopell et al. 2000; Breakspear & Stam 2005; Canolty
et al. 2006; Rabinovich et al. 2008). The notion of
attractors as the basis of generative models extends the
notion of generalized coordinates, encoding trajec-
tories, to families of trajectories that lie on attractor
manifolds, i.e. paths that are contained in the flow field
specified by the states of a supraordinate attractor.

Second, hierarchically deployed attractors enable
the brain to generate and predict different categories of
sequences. This is because any low-level attractor
embodies a family of trajectories that correspond to a
structured sequence. The neuronal activity encoding
the particular state at any time determines where the
current dynamics are within the sequence, while the
shape of the attractor manifold determines which
sequence is currently being expressed. In other
words, the attractor manifold encodes what is perceived
and the neuronal activity encodes where the percept is
on the manifold or within the sequence.

Third, if the state of a higher attractor changes the
manifold of a subordinate attractor, then the states of
the higher attractor come to encode the category of the
sequence or dynamics represented by the lower
attractor. This means that it is possible to generate
and represent sequences of sequences and, by
induction, sequences of sequences of sequences, etc.
This rests upon the states of neuronal attractors
providing control parameters for attractor dynamics
in the level below. This necessarily entails a nonlinear
interaction between the top-down predictions and the
states of the recipient attractor. Again, this is entirely
consistent with the known nonlinear effects of top-
down connections in the real brain.

Finally, this particular model has implications for
the temporal structure of perception. In other words,
the dynamics of high-level representations unfold more
slowly than the dynamics of lower level representations.
This is because the state of a higher attractor prescribes
a manifold that guides the flow of lower states. In the
limiting case, a fixed-point attractor will encode lower
Phil. Trans. R. Soc. B (2009)
level dynamics, which could change quite rapidly. In
the following, we see an example of this when
considering the perceptual categorization of different
sequences of chirps subtending birdsongs. This attri-
bute of hierarchically coupled attractors enables the
representation of arbitrarily long sequences of
sequences and suggests that neuronal representations
in the brain will change more slowly at higher levels
(Kiebel et al. 2008; see also Botvinick 2007; Hasson
et al. 2008). One can turn this argument on its head
and use the fact that we are able to recognize sequences
of sequences (e.g. Chait et al. 2007) as an existence
proof for this sort of generative model. In the
following examples, we try to show how autonomous
dynamics furnish generative models of sensory input,
which behave like real brains, when measured
electrophysiologically.

(b) A synthetic avian brain

The toy example used here deals with the generation
and recognition of birdsongs (Laje & Mindlin 2002).
We imagine that birdsongs are produced by two time-
varying control parameters that control the frequency
and amplitude of vibrations emanating from the syrinx
of a songbird (figure 2). There has been an extensive
modelling effort using attractor models at the biome-
chanical level to understand the generation of birdsong
(e.g. Laje et al. 2002). Here, we use the attractors at a
higher level to provide time-varying control over the
resulting sonograms (Fletcher 2000). We drive the
syrinx with two states of a Lorenz attractor, one
controlling the frequency (between 2 and 5 KHz) and
the other controlling the amplitude or volume (after
rectification). The parameters of the Lorenz attractor
were chosen to generate a short sequence of chirps
every second or so. To endow the songs with a
hierarchical structure, we placed a second Lorenz
attractor, whose dynamics were an order of magnitude
slower, over the first. The states of the slower attractor
entered as control parameters (the Rayleigh and
Prandtl numbers) to control the dynamics of the first.
These dynamics could range from a fixed-point
attractor, where the states of the first are all zero,
through to quasi-periodic and chaotic behaviour, when
the value of the Prandtl number exceeds an appropriate
threshold (approx. 24) and induces a bifurcation.
Because higher states evolve more slowly, they switch
the lower attractor on and off, generating distinct
songs, where each song comprises a series of distinct
chirps (figure 3).

(c) Song recognition

This model generates spontaneous sequences of songs
using autonomous dynamics. We generated a single
song, corresponding roughly to a cycle of the higher
attractor and then inverted the ensuing sonogram
(summarized as peak amplitude and volume), using
the message-passing scheme described in §2. The
results are shown in figure 3 and demonstrate that,
after several hundreds of milliseconds, the veridical
hidden states and supraordinate causes can be
recovered. Interestingly, the third chirp is not per-
ceived, suggesting that the first-level prediction error
was not sufficient to overcome the dynamical and
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Figure 2. Schematic showing the construction of the generative model for birdsongs. This comprises two Lorenz attractors
where the higher attractor delivers two control parameters (grey circles) to a lower level attractor, which, in turn, delivers two
control parameters to a synthetic syrinx to produce amplitude- and frequency-modulated stimuli ((a) neuronal hierarchy and
(b) syrinx). This stimulus is represented as a sonogram in (c). The equations represent the hierarchical dynamical model in the
form of equation (2.6).
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Figure 4. Results of simulated lesion studies using the birdsong model of figure 3. (i) The percept in terms of the predicted
sonograms and (ii) the corresponding prediction error (at both the levels); these are the differences between the incoming
sensory information and the prediction and the discrepancy between the conditional expectation of the second-level cause and
that predicted by the second-level hidden states. (a) The recognition dynamics in the intact bird. (b) The percept and
corresponding prediction errors when the connections between the hidden states at the second level and their corresponding
causes are removed. This effectively removes structural priors on the evolution of the attractor manifold prescribing the sensory
dynamics at the first level. (c) The effects of retaining the structural priors but removing the dynamical priors by cutting the
connections that mediate inversion in generalized coordinates. These results suggest that both structural and dynamical priors
are necessary for veridical perception.
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structural priors entailed by the model. However, once
the subsequent chirp had been predicted correctly, the
following sequence of chirps was recognized with a high
degree of conditional confidence. Note that when the
second and third chirps in the sequence are not
recognized, the first-level prediction error is high and
the conditional confidence about the causes at the
second level is low (reflected in the wide 90%
confidence intervals). Heuristically, this means that
the bird did not know which song was being emitted
and was unable to predict subsequent chirps.
(d) Structural and dynamical priors

This example provides a nice opportunity to illustrate
the relative roles of structural and dynamical priors.
Structural priors are provided by the top-down inputs
that dynamically reshape the manifold of the low-level
attractor. However, the low-level attractor itself
contains an abundance of dynamical priors that unfold
Phil. Trans. R. Soc. B (2009)
in generalized coordinates. Both structural (extrinsic)

and dynamical (intrinsic) priors provide important

constraints, which facilitate recognition. We can

selectively destroy these priors by lesioning the top-

down connections to remove structural priors or

by cutting the intrinsic connections that mediate

dynamical priors. The latter involves cutting the self-

connections in figure 1, among the state units. The

results of these two simulated lesion experiments are

shown in figure 4. Figure 4a shows the percept as

in figure 3, in terms of the predicted sonogram

and prediction error at the first and second levels.

Figure 4b,c shows exactly the same thing but without

structural and dynamical priors, respectively. In both

cases, the synthetic bird fails to recognize the sequence

with a corresponding inflation of prediction error,

particularly at the sensory level. Interestingly, the

removal of structural priors has a less marked effect

on recognition than removing the dynamical priors.
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Figure 5. Omission-related responses. Here, we have omitted the last few chirps from the stimulus. (a,c,e) The original sequence
and responses evoked. (b,d, f ) The equivalent dynamics on omission of the last chirps. (a,b) The stimulus and (c,d ) the
corresponding percept in sonogram format. The interesting thing to note here is the occurrence of an anomalous percept after
termination of the song in the lower right (i). This corresponds roughly to the chirp that would have been perceived in the
absence of omission. (e, f ) The corresponding (precision-weighted) prediction error under the two stimuli at both the levels.
A comparison of the two reveals a burst of prediction error when a stimulus is missed (ii) and at the point that the stimulus
terminates (iii), despite the fact that there is no stimulus present at this time. The red lines correspond to prediction error at the
first level and the pink lines correspond to prediction error at the second level.
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Without dynamical priors, there is a failure to segment
the sensory stream and, although there is a preservation
of frequency tracking, the dynamics per se have lost
their sequential structure. Although it is interesting to
compare and contrast the relative roles of structural
and dynamics priors, the important message here is
that both are necessary for veridical perception and that
destruction of either leads to suboptimal inference.
Both of these empirical priors prescribe dynamics,
which enable the synthetic bird to predict what will be
heard next. This leads to the question, ‘what would
happen if the song terminated prematurely?’
(e) Omission and violation of predictions

We repeated the above simulation but terminated the
song after the fifth chirp. The corresponding sono-
grams and percepts are shown with their prediction
errors in figure 5. Figure 5a,c,e shows the stimulus and
Phil. Trans. R. Soc. B (2009)
percept as in figure 4, while figure 5b,d, f shows the

stimulus and responses to omission of the last syllables.

These results illustrate two important phenomena.

First, there is a vigorous expression of prediction error

after the song terminates abruptly. This reflects the

dynamical nature of the recognition process because, at

this point, there is no sensory input to predict. In other

words, the prediction error is generated entirely by the

predictions afforded by the dynamical model of sensory

input. It can be seen that this prediction error (with a

percept but no stimulus) is almost as large as the

prediction error associated with the third and fourth

stimuli that are not perceived (stimulus but no

percept). Second, it can be seen that there is a transient

percept, when the omitted chirp should have occurred.

Its frequency is slightly too low but its timing is

preserved in relation to the expected stimulus train.

This is an interesting stimulation from the point of view
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Figure 6. (a) Schematic of perceptual categorization ((i) prediction and error, (ii) hidden states, (iii) causes and (iv) percept).
This follows the same format as in figure 3. However, here, there are no hidden states at the second level and the causes were
subject to stationary and uninformative priors. This song was generated by a first-level attractor with fixed control parameters of
vð1Þ1 Z16 and vð1Þ2 Z8=3, respectively. It can be seen that, on inversion of this model, these two control variables, corresponding to
causes or states at the second level, are recovered with relatively high conditional precision. However, it takes approximately 50
iterations (approx. 600 ms) before they stabilize. In other words, the sensory sequence has been mapped correctly to a point in
perceptual space after the occurrence of the second chirp. This song corresponds to song C (b(iii)). (b) The results of inversion
for three songs ((i) song A, (ii) song B and (iii) song C) each produced with three distinct pairs of values for the second-level
causes (the Rayleigh and Prandtl variables of the first-level attractor). (i–iii) The three songs shown in sonogram format
correspond to a series of relatively high-frequency chirps that fall progressively in both frequency and number as the Rayleigh
number is decreased. (iv) These are the second-level causes shown as a function of peristimulus time for the three songs. It can
be seen that the causes are identified after approximately 600 ms with high conditional precision. (v) The conditional density on
the causes shortly before the end of peristimulus time (vertical line in (iv)). The blue dots correspond to conditional means or
expectations and the grey areas correspond to the conditional confidence regions. Note that these encompass the true values (red
dots) used to generate the songs. These results indicate that there has been a successful categorization, in the sense that there is
no ambiguity (from the point of view of the synthetic bird) about which song was heard.
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of ERP studies of omission-related responses. These
simulations and related empirical studies (e.g. Nordby
et al. 1994; Yabe et al. 1997) provide clear evidence for
the predictive capacity of the brain. In this example,
prediction rests upon the internal construction of an
attractor manifold that defines a family of trajectories,
each corresponding to the realization of a particular
song. In the last simulation, we look more closely at
perceptual categorization of these songs.
(f ) Perceptual categorization
In the previous simulations, we saw that a song
corresponds to a sequence of chirps that are pre-
ordained by the shape of an attractor manifold
controlled by top-down inputs. This means that, for
every point in the state space of the higher attractor,
there is a corresponding manifold or category of song.
In other words, recognizing or categorizing a particular
song corresponds to finding a location in the higher
state space. This provides a nice metaphor for
perceptual categorization, because the neuronal states
of the higher attractor represent, implicitly, a category
of song. Inverting the generative model means that,
probabilistically, we can map from a sequence of
sensory events to a point in some perceptual space,
where this mapping corresponds to perceptual recog-
nition or categorization. This can be demonstrated in
Phil. Trans. R. Soc. B (2009)
our synthetic songbird by suppressing the dynamics of

the second-level attractor and letting its states optimize

their location in perceptual space, to best predict the

sensory input. To illustrate this, we generated three

songs by fixing the Rayleigh and Prandtl variables to

three distinct values. We then placed uninformative

priors on the top-down causes (that were previously

driven by the hidden states of the second-level

attractor) and inverted the model in the usual way.

Figure 6a shows the results of this simulation for a

single song. This song comprises a series of relatively

low-frequency chirps emitted every 250 ms or so. The

causes of this song (song C in (b)) are recovered after

the second chirp, with relatively tight confidence

intervals (the blue and green lines in (iv)). We then

repeated this for three songs. The results are shown in

figure 6b. The songs are portrayed in sonogram format

in figure 6b(i–iii) and the inferred perceptual causes in

figure 6b(iv)(v). Figure 6b(iv) shows the evolution of

these causes for all three songs as a function of

peristimulus time and figure 6b(v) shows the corre-

sponding conditional density in the causal or percep-

tual space after convergence. It can be seen that, for

all three songs, the 90% confidence interval encom-

passes the true values (red dots). Furthermore, there

is very little overlap between the conditional densities

(grey regions), which means that the precision of the
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perceptual categorization is almost 100 per cent. This is
a simple but nice example of perceptual categorization,
where sequences of sensory events, with extended
temporal support, can be mapped to locations in
perceptual space, through Bayesian deconvolution of
the sort entailed by the free-energy principle.
5. CONCLUSION
This paper suggests that the architecture of cortical
systems speak to hierarchical generative models in the
brain. The estimation or inversion of these models
corresponds to a generalized deconvolution of sensory
inputs to disclose their causes. This deconvolution can
be implemented in a neuronally plausible fashion, where
neuronal dynamics self-organize when exposed to inputs
to suppress free energy. The focus of this paper is on the
nature of the hierarchical models and, in particular,
models that show autonomous dynamics. These models
may be relevant for the brain because they enable
sequences of sequences to be inferred or recognized. We
have tried to demonstrate their plausibility, in relation to
empirical observations, by interpreting the prediction
error, associated with model inversion, with observed
electrophysiological responses. These models provide a
graceful way to map from complicated spatio-temporal
sensory trajectories to points in abstract perceptual
spaces. Furthermore, in a hierarchical setting, this
mapping may involve trajectories in perceptual spaces
of increasingly higher order.

The ideas presented in this paper have a long history,
starting with the notion of neuronal energy (Helmholtz
1860/1962), covering ideas such as efficient coding and
analysis by synthesis (Barlow 1961; Neisser 1967) to
more recent formulations in terms of Bayesian
inversion and predictive coding (e.g. Ballard et al.
1983; Mumford 1992; Kawato et al. 1993; Dayan et al.
1995; Rao & Ballard 1998). This work tries to provide
support for the notion that the brain uses attractors to
represent and predict causes in the sensorium
(Freeman 1987; Tsodyks 1999; Deco & Rolls 2003;
Byrne et al. 2007).

This work was funded by the Wellcome Trust. We would like
to thank our colleagues for their invaluable discussion about
these ideas and Marcia Bennett for her help in preparing this
manuscript.

All the schemes described in this paper are available in
MATLAB code as academic freeware (http://www.fil.ion.ucl.ac.
uk/spm). The simulation figures in this paper can be
reproduced from a graphical user interface called from the
DEM toolbox.
ENDNOTE
1To simplify notation, we use fxZvx fZvf /vx for the partial derivative

of the function, f, with respect to the variable x. We also use _xZvtx for

temporal derivatives. Furthermore, we deal with variables in

generalized coordinates of motion, denoted by a tilde;

~xZ ½x; x 0; x 00;.�T.
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